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Summary: Macrodbiide and mac&kMe synthetic bmphores 7 and 12 have been prepared fmrn hydropyran suounits. 
ion binding data and w ana@ies for tMs new ciass of optically pure macmcy& hosts are repotted. 
Macmdbiide 7 shows moderate seisctivity for Li+, with an association constant (K.) of 1.5 x ld M”. 

We have extended our IntereM? in natural poiyether and macmiide antibbtics b include the synthesis and study 

of unnatural macrooxacycib @and arrays that are chirai and non-racemic. The importance of preofganizatbn, convergence 

of binding sites and rigiiity is wfdeiy adcnowisdgsd in the design of effeuive and selective host molecules? We sought 

to satisfy these requirements by consbucting macmcydes from hydmpyran suMnits connected by ester linkages:’ The 

combined constraints of the &2,5disubstih~ted oxacycie and Z-ester confotmatbn# were expected to define the shape 

of the macrocycle. Moreover, three different types of oxygens as potential ligating sites would line the cavity of the host. 

Described bebw are syntheses of the &synmmtric maaodbiide 7 and the C,-symmetric macmtrbiide 12: aiong with bn 

binding and crystaibgmphb data for each. 

As detaiied previously,7 the opticaiiy pure akbhyde 1 was convetted to the dbxanone 2 (Scheme I), which served 

as a Substrate for an ireiandCiaiin rearrangemef# to the -ran cafboxyik acid 2. Cataiytb hydmgenatbn of the 

6 7 

a) 1 eq L.iHMDS. 5 eq 1:l TMSCl&N, THF, -78°C. thea mfhu 4.a 5% 4 ‘HCL b) I$ (1 arm). w/c, WH. ct.. 10 h. 
c) DCC, DMAP, DMAP-TFA. C!&C12. 2S=C. d) DCC, DMAP, DMAPTFA, CHCI , mtlw 6 ulded WCC llh. tlwm mtlux 
additional 3h. 8) 2,2’-diiyldimlt% Ph,P. xylem; mfhm xylem. f) PhsP. DEA!X PhH. 25.C. 4d. 
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olefin and concomitant hydrogenolysis of the henxyl-ether, yielding 4a, was followed hy conversbn to the hydroxy ester 4b 

via the Keck procedure! Coupfbg of 4b and 3, agafn using the DCC, DMAP, DMAP-TFA procedure0 proceeded in 98% 

yiefd to give 5. Exposure of this substance to & and 5% P&C fn ethanol effected saturation of the ofefin and 

hydrogenotyses of the henzyl ether and ester moieties. A third apptkatbn of the Keck-Stegtkh coupling gave the G 

symmetric macrodblfde 7 as oobrfess crystab [mp 129127oc, tabs’ M.5 (~0.93, CHCt,), MWf88.2194, cakd 388.21991 

in 85% yield. As expected, the synxnehy of this substance was reftected in the “C NMR spectrum, whkh exhibited onfy 

ten resonances (CDC4, S 172.2,83.9,80.0,70.2,38.7,30.2,29.9,23.8,13.2,12.9). The enantbmer [mp 128-12PC, [aha 

42.2 (c 1.32, CHCt&] of 7 was atso constructed, startbg from the eptmer of akfehyde 1. Direct d1merfzatbn of hydroxy 

actd C hy ettfter the Corey procedure [e) in S&ems I]‘O or the Mttsunohu coupttng [f) tn Scheme 5” provfded a two-step, 

afbett tow-yiekffng (lo%), route to 7 from 3. 
Scheme fI” 

Y 

lO.R=CI&Ph 

b’ 97s cll, R=H 

a) 9 (en&4b). DCC. DMAP. DMAP.TPA, CH.&. r.t.. 1Ch. b) s (1 abn). 10% PdK, EtCM c) DCC, DMAP. DMAP-TFA. CHCl,. rcfhx; 
11 d&d ova 12h. then reflux ddiriolvl4h. 

The extension of thii mute to a hydropyran trtmer wfth q-symmetry k shown in Scheme if. The 

his(tetrahydropyran) 8” was coupted wfth the hydmxy ester 9 (the antipode of 4b in Scheme I) to give in 71% yield the 

pseudotrimer 10. Hydmgenolysfs of the henzyl groups proceeded in hfgh ybfd to gtve the hydroxy add 11. Cbsure of the 

21memhered macrotrbtkfe gave 12 [dec 228227°C [ah= -17.7 (c 0.85, CHClJ in 83% yield. Mass spectrometrk 

(MW52.3299, cakd 552.3298) and ‘c NMR data (CDC4,6 l798,79.5,79.1,88.2,37.1.30.3,29.8,22.5,13.3,12.8) are 

diagnostic for this substance. Shown in Schemes I and II are X-ray crystal structures of macrodiotiie 7 and mactotrblide 

12. The cavity size in 7 is indkated by the dtstances from 0, to 0,’ and Oz to 4’ which are 3.73 and 3.78A, respecttvely. 

Interestingly, the ester carhonyl oxyoens fn 12 determine the shortest intracavtty distance 0, to 0,’ of 4.47A. The distances 

for 0, to 0,’ and 0, to 0,’ are 5.74A and 5.93A, respectively. 

Mobartar modeling of macroltdes 7 and 12 from the X-ray coordinates produced a mfnimtzed energy confomtatbn 

for each macrocycb which differed only stfghtfy from that present in the crystal.” Macrodblbe 7 thus has a 1Cmemhered 

core whose conformatbn reflects the r&rictbns Imposed hy the cis-2,8dtequatorfai attachments to the hydtopyran rings 

and the preferred syn (or 2) ester confomUfons.6 The 21-membered macrotrblfde 12 has similar bcaf geometrkal 

constraints, hut the larger ring ts more flexible. An interesting dfstinctbn between 7 and 12 is that the carhonyls in the latter 

are more nearly perpendicular to the mean plane of the macrocycle. 

The associatbn constants (KJ and binding free energies (-AGo) of the macrocycik hosts 7 and 12 in CDCI, 

saturated wfth b0 at 23-25°C were determined by measurements from the CCC4 layer using Cram’s pkrate extraction 

method (Table I).” The absorption maxima (348 s X, s 382nm) of the pkrate satts are indkatfve of 1:l complexes 

between metal pkrate and macrocyctic hostJS The macrocyclk hosts 7 and 12 do not diffuse from the CDC4 layer to the 
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Table I. Comparative association constaut (K.) and bmdiog free energies (-1 GO) of 

macrocyclic hosts for picratc salt guests in CDCl:, satumkd with Hz0 at 23-25 C. 

4 (M-l); -AGo (kcalhol) for guests M+ 

Macrocyclic host Li+ Na+ K+ 
12-[crown]-4 1.6 x 104; 5.7 7.3 x ld; 5.2 4.0 x ld; 4.0 

Diolide 7 1.5 x 16; 7.0 4.6 x 104; 6.3 4.2 x ld; 4.9 

15-[cTown]-5’* 1.0 x 16; 6.8 4.1 x lti; 9.0 7.7 x 105; 8.0 

18-[Crown]-6-(dicyclohcxaao)’ 1.9 x 16; 7.2 2.3 x I$; 8.7 2.0 x lo*; 11 

Triolidc 12 3.1 x ld; 4.7 6.1 x Id; 5.1 5.3 x ld; 5.1 

5.1 x 106; 9.1 

3.4 x ld; 4.8 

l-&O layer. Macmdblide 7 exhibits sign&ant seledhrity in its complexatbn of the guest catbns, wfth the preference br 

Lii>Na*>K+ in line wtth expectatbns based upon cavity size. The association constant for the interactbn of 7 with Li+ 

exceeds that oll2-[Cmwnl-4 by one order ol magnitude. The thirty-fold selsotivlly of 7 for Ll+ over K+ exceeds that of 12- 

(Cmwnj-4 hy a similar factor. Ths macmtriolids 12, with its larger and less rfgid cavity, exhibits little selectivity between V, 

Na+, K*, and Rh*. 

Further related studies on the solutbn and solid state confomtatbns of these and simtlar ligands and conplexes 

are under way, including the reccgnitbn and transport of chiral guests.“ 
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